Visualizing Public Health Data

Anamaria Crisan, MSc
PhD Candidate
University of British Columbia

@amcrisan acrisan@cs.ubc.ca http://cs.ubc.ca/~acrisan
I will attempt to make two points

• The differences between clinical medicine and public health and the vis implications

• Provide an overview of the state of visualization within a public health domain
Public Health and Clinical Medicine
Clinical Medicine vs. Public Health

Clinical Medicine
• Targets individual patients

Public Health
• Targets populations
Clinical Medicine vs. Public Health

Clinical Medicine
- Targets individual patients
- Diagnosis and treatment focused

Public Health
- Targets populations
- Prevention and control focused
Clinical Medicine vs. Public Health

Clinical Medicine
- Targets individual patients
- Diagnosis and treatment focused
- Interventions are typically pharmaceutical interventions

Public Health
- Targets populations
- Prevention and control focused
- Pharmaceutical, but also more commonly environmental and behavioral interventions
Clinical Medicine vs. Public Health

Clinical Medicine
• Targets individual patients
• Diagnosis and treatment focused
• Interventions are typically pharmaceutical interventions
• Decision makers typically siloed specialists (doctors, nurses, etc.)

Public Health
• Targets populations
• Prevention and control focused
• Pharmaceutical, but also more commonly environmental and behavioral interventions
• Decision makers diverse, not necessarily specialists (community leaders, etc.)
Clinical Medicine vs. Public Health

Clinical Medicine

• Targets individual patients
• Diagnosis and treatment focused
• Interventions are typically pharmaceutical interventions
• Decision makers typically siloed specialists (doctors, nurses, etc.)

Public Health

• Targets populations
• Prevention and control focused
• Pharmaceutical, but also more commonly environmental and behavioral interventions
• Decision makers diverse, not necessarily specialists (community leaders, etc.)

Example:

Treating lung cancer patient

Anti-smoking campaign

Both use data, even the same data, in different ways
Currently data vis tends to emphasize clinical medicine applications and targets clinicians, researchers, and patients.
Visualization consumers in public health

- Public Health has much more multidisciplinary decision making teams
 - More data & diverse data types = more informed decision making
 - BUT – different stakeholder abilities to interpret data & different needs

- Gap: few vis applications for public health
What are Public Health Data?
What are Public Health Data?

The Epidemiological Trinity

Person

Time

Place
What are Public Health Data?

- Whole Genome Sequences (WGS)
- Pathogen or Human
- Contact & Social networks
- Outcomes
- Treatment

Person

Place

Time
What are Public Health Data?

Whole Genome Sequences (WGS)
Pathogen or Human
My project: Tuberculosis (TB) WGS
What are Public Health Data?

Location
Geographic Context
What are Public Health Data?
What are Public Health Data?

Via EHRs data are passively collected about entire populations over time
The State of Data Vis in Public Health
The state of visualization in public health

- Barriers for creating data visualizations are lowering
 - Many domain specialists (scientists, public servants) routinely create data visualizations

- Guidance on what makes a good data visualization is absent
 - Domain specialists don’t read the vis literature

- Lack of guidance = inefficient unsupervised exploration of vis design space
 - “Hit or Miss” ad hoc design solutions
The state of visualization in public health

- Barriers for creating data visualizations are *lowering*
 - Many domain specialists (scientists, public servants) routinely create data visualizations

- Guidance on what makes a good data visualization is *absent*
 - Domain specialists don’t read the vis literature

- Lack of guidance = inefficient unsupervised exploration of vis design space
 - “Hit or Miss” ad hoc design solutions

- Our proposed solution: systematically create an explorable vis design space
Design Spaces: A quick primer

Design spaces are made of visualization design choices or varying utility (+ 0 -)

Design Spaces: A quick primer

GOAL – nudge domain specialists toward better design choice solutions

Design Spaces : A quick primer

BUT – how do we **systematically** describe design space to promote good exploration?

Constructing a design space

- Our observation: there’s a lot of figures in research papers, let’s study them!
- Challenge: methods for systematic assessment of data visualizations don’t exist
 - Systematic matters! Shows the good, the bad, and the common
 - Existing studies (setvis, treevis, vishealth) are not systematic reviews of specialist's domain
- We combined methods from epidemiology with infovis to construct a design space
Our approach allows us to answer three different questions

- **Scope:** Infectious Disease Genomic Epidemiology literature

- **Objective:** Identify and enumerate the kinds of visualizations generated for different topics of infectious disease genomic epidemiology
Our approach allows us to answer three different questions

- **Scope:** Infectious Disease Genomic Epidemiology literature
- **Objective:** Identify and enumerate the kinds of visualizations generated for different topics of infectious disease genomic epidemiology
Our approach allows us to answer three different questions

- **Scope:** Infectious Disease Genomic Epidemiology literature
- **Objective:** Identify and enumerate the kinds of visualizations generated for different topics of infectious disease genomic epidemiology

<table>
<thead>
<tr>
<th>Literature Analysis</th>
<th>WHY are researchers visualizing data?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative Data Visualization Analysis</td>
<td>HOW are researchers visualizing data, WHAT are they visualizing?</td>
</tr>
<tr>
<td>Quantitative Data Visualization Analysis</td>
<td>HOW MANY examples are there of specific visualizations?</td>
</tr>
</tbody>
</table>
Unpublished & still some work to be done so please don’t distribute
Implications of our findings

• **Surprise finding: a lot of data in data visualizations were not visualized!**

• **Pedagogical implications:**
 - Can we give people more complex vis applications when their vis skills are kind of low?
 - How can we improve vis literacy?
 - I think a design space is a useful discussion tool

• **Software develop implications:**
 - Discussion of a design space in bioinformatics development
 - GEViT is resource to provide alternative designs
 - Alternative designs also see gaps in the where vis research is needed

• **Human-in-the-loop implications:**
 - Need to think beyond image recognition problems
 - Might be premature to apply AI methods (no good training data)
Additional Slides
An overview of our results so far

- **Literature Analysis:** Understanding the structure of genomic epidemiology papers promotes systematicity via intelligent sampling
 - Total sample ~18K papers on genomic epidemiology
 - Defined strata by pathogen (document structure) and a priori concepts (domain knowledge)
 - Literature analysis stratified sampling yielded ~850 figures for analysis from 221 papers

- **Qualitative Analysis:** Developed GEViT, a Genomic Epidemiology Visualization Typology
 - Developed a typology to systematically described charts using three descriptive axes: chart types, chart combinations, and chart enhancements

- **Quantitative Analysis:** It’s nearly all phylogenetic trees, across all pathogens and concepts, but there’s also a lot of tables and plain text

- **Surprising general conclusion:** most data is these data visualizations are not visualized
“Identify and enumerate the kinds of visualizations generated per topic of i.d. genomic epidemiology”
“Identify and enumerate the kinds of visualizations generated per topic of i.d. genomic epidemiology”
“Identify and enumerate the kinds of visualizations generated per topic of i.d. genomic epidemiology”

1. Text mining analysis of document corpus
2. Systematically sample papers
An overview of our approach

“Identify and enumerate the kinds of visualizations generated per topic of i.d. genomic epidemiology”

1. Text mining analysis of document corpus
2. Systematically sample papers
3. Create a codeset to classify research figures consistently
An overview of our approach

1. Text mining analysis of document corpus
2. Systematically sample papers
3. Create a codeset to classify research figures consistently
4. Apply code set to research figures

"Identify and enumerate the kinds of visualizations generated per topic of i.d. genomic epidemiology"
Identify and enumerate the kinds of visualizations generated per topic of i.d. genomic epidemiology

An overview of our approach

1. Text mining analysis of document corpus
2. Systematically sample papers
3. Create a codeset to classify research figures consistently
4. Apply code set to research figures
5. Descriptive statistics (literally count)